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It is shown that polynomials which minimize certain L.- or maximum norms
defined on the real interval I = [a, b] have only simple roots. This is also shown
to be true for monotonically increasing functions of the above norms.

The following considerations refer to L s- and maximum norms defined
on the real interval [= [a, b]. The Ls-norms are of the form

Ilfll. := 1i Ij(x)IS du(X)(S, s ~ I, (1)

where u(x) is for s > I nondecreasing and continuous on [with u(b) > u(a),
and for s = I continuously differentiable with positive derivative. The
maximum norms are of the form

Ilflloo := max {w(x) I j(x)!}
XEI

with w(x) continuous and positive on [.
The problem of finding a polynomial which belongs to the set

(2)

Dn := {p: p(x) = xn + a1xn- 1 + ... + an, ai E IR or C, i = 1(1)n} (3)

and minimises the norms (I) or (2) over this set has a unique solution. For
s > I this is due to the strict convexity of the norms (I). For s = I and for
the maximum norms this is due to the fact that the powers of x multiplied
by a positive continuous function make up a Haar system [I, pp. 81,219].

In the case s = 2, i.e., the case of a Hilbert-norm, it is easy to show by
means ofBessel's inequality that the solution of the problem is the polynomial
of Dn which belongs to the set of orthogonal polynomials with respect to the
corresponding scalar product [2, p. 39]. Polynomials, which minimize other
Ls-norms, can therefore be considered as a generalization of the orthogonal
polynomials [2, p. 41], and it may be expected that they have some properties
in common with the orthogonal polynomials.
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An important property of this kind is that the zeros of norm-minimizing
polynomials lie all in I. This follows immediately from a more general
theorem of Fejer [3, pp. 243-244], and is simply due to the fact that if
p(x) = (x - xJ q(x) is a polynomial with a zero Xl not lying in I, then the
polynomial rex) = (x - xo) q(x), where Xo is the nearest to Xl point of I,
has a smaller L s- or maximum-norm since

I X - X o I < I x - Xl I "Ix EI. (4)

Here it will be shown that the polynomials, which minimize the norms (1)
and (2), have the further common property that all their zeros are simple.
However, it should be noted that no counterpart of this property exists in the
case that a complex curve C is considered instead of a real interval. For
example, if C is the unit circle, then the minimizing polynomials of the
corresponding L.-norms with u(x) = x, and of the maximum-norm with
w(x) = 1 are simply p(x) = xn [4, pp. 238, 240J.

The theorem to be proved is the following:

THEOREM 1. Let p E Dn be a polynomial which minimizes one of the norms
(1) or (2). Then all the zeros ofp are simple.

Proof. Let the minimizing polynomial for II II, (s ? 1) have a multiple
zero C E (a, b). Since this zero is at least double,

p(x) = (x - c)2 q(x), q EDn _ 2 • (5)

Furthermore, the following inequalities are valid:

(x - C)2 > (x - (c - h»(x - (c + h») = (x - C)2 - h2 := y(x) (6)

with arbitrary positive h, and

y(x) ? 0 for XEG:= [a, c - h] U [c + h,bJ, (7)

as well as
Iy(x)[ :(; h2 for x E [c - h, c + h]. (8)

For s ? 1, and y(x) ? 0, i.e., x E G,

[x - C 12• = (y(X) + h2). ? Y(X)' + h2••

Therefore, since u(x) is nondecreasing, it follows that

(9)

LIp(x)I' du(x) ? t (y(x) + h2
). [ q(x)[' du(x)

? f Iy(x) q(x)I, du(x) + h2
• f I q(x)]' du(x), (10)

G G



and hence
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LIp(x)I' du(x) ~ LIy(x) q(x)I' du(x) - fc~:h Iy(x) q(x)I' du(x)

+ h2
• LI q(x)I' du(x). (11)

But for h small enough,

J
C+h JC+h JIy(x) q(x)I' du(x) ~ h2• I q(x)I' du(x) < h2

• I q(x)[' du(x).c-h c-h G (12)

The first of the inequalities (12) is true because of (8). The second is true
for h small enough, because with h becomming smaller the integral over
[c - h, C + h] tends to zero, and the integral over G tends to the integral
over I, which is positive.

From (11) and (12) it then follows that

that is,

LIp(x)I' du(x) > LIy(x) q(x)I' du(x),

Ilpll. > II yq II..

(13)

(14)

in contradiction to the assumption that p minimizes the norm.
In the case c = a or c = b the proof is similar. The only difference is that

instead of the interval [c - h, c + h], the intervals [a, a + h] resp. [b - h, b]
have to be considered.

In the case of a maximum-norm one has for sufficiently small h,

max {(x - C)2 Iq(x) I w(x)} = max {(x - C)2 Iq(x)I w(x)}
XE! XEG

> max {y(x) I q(x)I w(x)}
XEG

= max {I y(x) I [q(x) Iw(x)}. (15)
XE!

The maxima over I cannot lie in [c - h, c + h] for h small enough because
both expressions considered then become arbitrarily small in this interval.

From (15) it follows that

(16)

that is, an inequality which contradicts the assumption that any polynomial
of the form (5) would minimize the maximum-norm.

It should be noted that if uniqueness of the minimizing polynomial is not
required, then the assumptions for the L1-norms can be the same as for the
other L.-norms. That is, u(x) need only be continuous and nondecreasing
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with u(b) > u(a). The uniqueness of the minimizing polynomial is then not
guaranteed, but it is easy to see that all minimizing polynomials must have
real and simple zeros lying in I. The Ll-norms defined thus can always be
reduced, as shown above, by replacing any complex zero by a real zero lying
in I, and any multiple real zero by simple ones.

The proof of Theorem I is independent of the specific value of s or of the
specific u(x) or w(x) used, provided that the general assumptions are fulfilled.
This means that, if p is a polynomial with a zero not lying in I, then all
possible norms of the forms (1) and (2) can simultaneously be reduced by
replacing this zero by the nearest point to it of I. Also if p has a multiple
real zero in I, then, according to the inequalities (14) and (16), all these norms
can simultaneously be reduced by replacing a quadratic factor of the
polynomial by two simple factors. Therefore, the following general statement
is valid:

THEOREM 2. Let M(tl , ••. , tm) be a monotonically increasing function of the
nonnegative variables t i , i = l(l)m, and consider the functional

GU) := MOlfll.} ,..., Ilfll.J, (17)

where IIf11•. are norms of the forms (1) and (2), possibly with different u(x) or
w(x) for e~ch norm. Then, if there exist polynomials p E D n minimizing this
functional over D n , the zeros of these polynomials are all real and simple and
lie in I.

Proof As stated above, any polynomial p E D n with zeros not lying in I
or with multiple zeros in I can be replaced by a polynomial r E Dn having
only simple zeros all lying in I, whose norms are smaller (II r II. < II p II.
for all s ?: 1 and s = 00). Since M is a monotonically increasing function,
the value of the functional for this polynomial is also smaller (G(r) < G(p».
Therefore the minimizing polynomials of G have only real and simple zeros
lying in I.

An example of a function M for which the functional G(f) is again a norm
is (with ti ?: 0)

d?: 1. (18)

If one of the norms Ilfll. used is strictly convex, then the resulting norm
Ilfll := G(f) is also strictiy convex, and has therefore a unique minimizing
polynomial whose zeros are, according to the above theorem, simple and
lie in I.

The strict convexity of the norm follows directly from the observation that,
since M is a monotonically increasing function, the equality

Ilf+ g[[ = Ilfll + II g[[ (19)
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is only possible if such an equality is valid for each of the norms II lis, ' i.e.,

Ilf+ g lis, = Ilfllst + II g list' i = l(l)m. (20)

Since one of these norms is strictly convex, it follows that

g = cf, c > 0, (21)

with c constant, which means that the above composite norm is also strictly
convex.

The above example shows that Theorem 2 is a partial completion of
Fejer's theorem given by Davis [3, p. 244]. From Fejer's theorem it follows
that in this case the zeros of the minimizing polynomial are real and lie in I;
from Theorem 2 it follows that they are also simple.
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